ORIGINAL ARTICLE

Novel synthesis of resorcinarene *O*-acetates by BF₃·OEt₂-catalyzed cyclocondensation of 1,3-(dialkoxycarbonylmethoxy)benzenes with aldehydes

Rui Zhou · Jia Chao Ren · Chao Guo Yan

Received: 17 July 2009/Accepted: 24 November 2009/Published online: 5 December 2009 © Springer Science+Business Media B.V. 2009

Abstract Resorcinarene *O*-acetates, which are key intermediates in the chemical modification process of resorcinarene, can be efficiently prepared in high yields by $BF_3 \cdot OEt_2$ catalyzed cyclocondensation of 1,3-(dialkoxycarbonylmethoxy)benzenes with aromatic or aliphatic aldehydes in CH_2Cl_2 at room temperature. The single crystal structure analysis indicates alkyl resorcinarenes prefer *rccc* configuration, while aryl resorcinarenes usually adopt *rctt* configuration.

Keywords Resorcinarene · Acetate · Alkylation · Configuration · Crystal structure

Introduction

Resorcinarenes are unique three-dimensional cyclic aromatic tetramers, which are easily synthesized by wellestablished one-pot procedures and are easily available building blocks for the design of various supramolecular arc structures. [1, 2] The presence of a molecular cavity, which varies in size and properties depending on the nature and arrangement of introduced functional groups, indicates their potentially wide usage as receptor systems, and building blocks for even more larger supramolecular assemblies [3– 5]. To perform this design, various methods have been developed for complete and selective chemical modifications on the upper rim and lower rim of resorcinarenes. Acylations and alkylations of hydroxyl groups were usually used for the synthesis of cavitands, carcerands,

R. Zhou · J. C. Ren · C. G. Yan (⊠) College of Chemistry and Chemical Engineering, Yangzhou University, 225002 Yangzhou, China e-mail: cgyan@yzu.edu.cn hemicarcerands and molecule capsules [6]. Resorcinarenes are traditionally prepared by the mineral acid-catalyzed condensation of resorcinol with an aliphatic or aromatic aldehyde [7]. A solvent-free synthesis of resorcinarenes using *p*-toluene-sulfonic acid as the catalyst has also been reported [8]. In addition, some conventional Lewis acids like BF₃·OEt₂, AlCl₃, and SnCl₄ have been used in the synthesis of aromatic aldehyde-derived resorcinarenes [9, 10]. More recently, ytterbium(III) triflate [11, 12] and bismuth(III) triflate [13, 14], have been described as efficient catalysts for the synthesis of calix[4]resorcinarenes. Their octaether derivatives have also been prepared by the acid-catalyzed condensation of 1,3-dialkoxybenzenes with aldehydes [15, 16]. Furthermore, the acid-catalyzed cyclooligomerization of 2,4-dialkoxycinnamates [17] or 2,4-dialkoxybenzyl alcohols [18, 19] produces the cyclic products. The acidcatalyzed condensation of 2-propylresorcinol with formaldehyde diethyl acetal to form calix[4]resorcinarene, calix[5]resorcinarene, and calix[6]resorcinarene [20, 21]. Our continued interest in the design of new types of valuable receptor molecules for supramolecular structures prompted us to investigate the efficient synthesis of resorcinarene functional derivatives [22, 23]. We initiated a study on the possibility of direct synthesis of functional resorcinarene derivatives, and herein we wish to report our research results of the efficient synthesis and crystal structures of resorcinarene O-acetates by BF₃·OEt₂ catalyzed cyclocondensation reactions of 1,3-(dialkoxycarbonylmethoxy)benzenes with aldehydes.

Experiment section

All reagents and solvents were commercial available with analytical grade and used as received. Further purification and drying by standard method were employed and distilled prior to use when necessary. All evaporations of organic solvents were carried out with a rotary evaporator in conjunction with a water aspirator. Melting points were taken on a hot-plate microscope apparatus and are uncorrected. ¹H NMR and ¹³C NMR spectra were recorded with a Bruker AV-600 spectrometer. IR spectra were obtained on a Bruker Tensor27 spectrometer (KBr disc). X-ray data were collected on a Bruker Smart APEX-2 CCD diffractometer.

General procedure for the synthesis of resorcinarene *O*-acetates

A solution of aldehyde (10.0 mmol) and 1,3-di(alkoxycarbonylmethoxy)benzene **1a–1b** (10.0 mmol) in anhydrous dichloromethane (30 mL) was cooled in ice bath. Boron trifluoride etherate (40.0 mmol, 5.70 g) was added dropwise to the solution and the mixture was stirred at room temperature overnight. The reaction mixture was then washed with water (100 mL), and the organic layer was dried with CaCl₂ and the solvent removed under reduced pressure to give a red oil residue. This was dissolved in a minimum amount of hot ethanol that, upon cooling afforded pale plates. Recrystallisation from ethanol and chloroform gave pure products **2a–2m** for analysis.

2a (R = CH₃, R' = C₂H₅): white solid, Yield: 69%, mp: 111.1–112.6 °C. IR (KBr disc) v: 2960(m), 1761(vs), 1614(m), 1587(m), 1504(s), 1439(s), 1408(m) 1379(s), 1125(s), 1084(s), 1026(m), 860(w) cm⁻¹. ¹H NMR (CDCl₃) δ : 7.11 ~ 7.07 (m, 1H, ArH), 6.65 (s, 2H, ArH), 6.26 (d, *J* = 4.2 Hz, 1H, ArH), 6.21 (s, 3H, ArH), 6.13 (d, *J* = 4.8 Hz, 1H, ArH), 4.56 ~ 4.52 (m, 8H, OCH₂), 4.32 ~ 4.25 (m, 10H, OCH₂, CH), 4.09 ~ 3.97 (m, 2H, CH), 3.76 (s, 24H, OCH₃), 1.89 (q, *J* = 14.4 Hz, 8H, CH₂); 0.95 (t, *J* = 7.2 Hz, 12H, CH₃); ¹³C NMR (CDCl₃) δ : 13.7, 22.3, 27.6, 29.5, 31.6, 31.6, 34.1, 35.2, 51.5, 66.7, 100.3, 126.1, 128.1, 154.1, 169.4.

2b (R = CH₃, R' = n-C₃H₇): white solid, Yield: 63%, mp: 127.6–128.7 °C. IR (KBr) v: 3442(w), 2955(m), 2869(m), 1765(vs), 1613(m), 1587(m), 1503(s), 1438(s), 1408(m), 1379(s), 1180(s), 1124(s), 1078(s), 1078(m), 859(w) cm⁻¹. ¹H NMR (CDCl₃) δ : 6.62 (s, 4H, ArH), 6.21 (s, 4H, ArH), 4.61 (t, J = 6.6 Hz, 4H, CH), 4.28 (s, 16H, OCH₂), 3.76 (s, 24H, OCH₃), 1.84 (q, J = 7.2 Hz, 8H, CH₂), 1.37 (q, J = 7.2 Hz, 8H, CH₂), 0.93 (t, J = 7.2 Hz, 12H, CH₃); ¹³C NMR (CDCl₃) [ppm]: δ : 14.1, 20.0, 22.6, 27.6, 30.5, 32.0, 34.4, 35.6, 51.9, 67.1, 100.7, 126.5, 128.5, 154.4, 169.8.

2c (R = CH₃, R' = n-C₅H₁₁): 67%, mp: 103.6–104.7 °C. IR (KBr) v: 2956(s), 2930(s), 1764(vs), 1612(m), 1587(m), 1503(s), 1439(s), 1407(m), 1379(s), 1130(s), 1083(s), 978(m), 905(m), 830(w) cm⁻¹. ¹H NMR(CDCl₃) δ : 6.61 (s, 4H, ArH), 6.21 (s, 4H, ArH), 4.58 (b, 4H, CH), 4.28 (s, 16H, OCH₂), 3.76 (s, 24H, OCH₃), 1.85 (d, J = 6.0 Hz, 8H, CH₂), 1.29 (s, 24H, CH₂), 0.85 (t, J = 6.0 Hz, 12H, CH₃); ¹³C NMR (CDCl₃) δ : 14.1, 22.7, 27.9, 29.5, 29.6, 31.9, 34.5, 35.6, 51.9, 67.1, 100.7, 126.5, 128.5, 154.4, 169.8.

2d (R = CH₃, R' = n-C₆H₁₃): white solid, 57%, mp: 69.6–70.9 °C. IR (KBr) v: 2956(s), 2927(s), 1765(vs), 1612(m), 1587(m), 1503(s), 1439(s), 1407(m), 1379(s), 1130(s), 1084(s), 978(m), 905(m), 833(w) cm⁻¹. ¹H NMR (CDCl₃) δ : 7.09 ~ 7.05 (m, 1H, ArH), 6.62 (s, 2H, ArH), 6.27 (t, *J* = 9.0 Hz, 1H, ArH), 6.21 (s, 3H, ArH), 6.13 (d, *J* = 3.6 Hz, 1H, ArH), 4.59 (b, 4H, CH), 4.28 (b, 10H, OCH₂), 4.12 ~ 3.99 (m, 2H, OCH₂), 3.76 (s, 24H, OCH₃), 1.85 (d, *J* = 5.4 Hz, 8H, CH₂), 1.33–1.25 (m, 32H, CH₂), 0.85 (t, *J* = 6.6 Hz, 12H, CH₃); ¹³C NMR (CDCl₃) δ : 47.8, 50.9, 51.0, 51.0, 51.1, 65.7, 65.9, 98.0, 99.4, 124.6, 125.5, 126.2, 126.5, 127.9, 127.9, 131.3, 140.9, 153.4, 153.6, 168.3, 168.4, 168.6.

2e (R = CH₃, R' = n-C₇H₁₅): light white solid, Yield: 72%, mp: 78.4–79.9 °C. IR (KBr) v: 2956(s), 2927(s), 1765(vs), 1612(m), 1587(m), 1503(s), 1439(s), 1407(m), 1379(s), 1129(s), 1085(s), 979(m), 903(m), 834(w) cm⁻¹. ¹H NMR (CDCl₃) δ : 7.11 ~ 7.07 (m, 1H, ArH), 6.61 (s, 2H, ArH), 6.28 ~ 6.26 (m, 1H, ArH), 6.21 (s, 3H, ArH), 6.12 (d, J = 1.8 Hz, 1H, ArH), 4.61 ~ 4.55 (m, 4H, CH), 4.27 (b, 10H, OCH₂), 4.09 ~ 3.97 (m, 2H, OCH₂), 3.75 (s, 24H, OCH₃), 1.32 (s, 16H, CH₂), 1.22–1.26 (m, 32H, CH₂), 0.85 (s, 12H, CH₃); ¹³C NMR (CDCl₃) δ : 14.0, 22.6, 27.9, 29.4, 29.6, 29.9, 31.9, 34.4, 35.6, 51.8, 67.0, 98.2, 99.2, 100.2, 100.6, 126.4, 128.4, 154.3, 169.7.

2f (R = CH₃, R' = n-C₈H₁₇): light white solid, Yield: 62%, mp: 78.1–79.7 °C. IR (KBr) v: 2956(s), 2926(s), 1766(vs), 1611(m), 1587(m), 1503(s), 1438(s), 1407(m), 1379(s), 1307(s), 1214(s), 1129(s), 1084(s), 979(m), 904(m) cm⁻¹; ¹H NMR (CDCl₃) δ : 7.10 ~ 7.06 (m, 1H, ArH), 6.61 (s, 3H, ArH), 6.27 (s, 1H, ArH), 6.21 (s, 2H, ArH), 6.13 (s, 1H, ArH), 4.59 ~ 4.54 (m, 4H, CH), 4.39 ~ 4.19 (m, 10H, OCH₂), 4.10 ~ 3.97 (m, 2H, OCH₂), 3.76 (s, 24H, OCH₃), 1.82–1.86 (m, 6H, CH₂), 1.23 (b, 50H, CH₂), 0.86 (t, J = 6.6 Hz, 12H, CH₃); ¹³C NMR (CDCl₃) δ : 14.1, 22.7, 27.9, 28.0, 29.4, 29.7, 29.8, 30.0, 31.9, 34.5, 35.7, 51.9, 67.1, 100.7, 126.5, 128.5, 154.4, 169.8.

2g (R = CH₃, R' = n-C₉H₁₉): light yellow solid, Yield: 67%, mp: 81.3–82.9 °C. IR (KBr) v: 2956(s), 2925(s), 1766(vs), 1611(m), 1587(m), 1503(s), 1438(s), 1407(m), 1379(s), 1307(s), 1213(s), 1129(s), 1084(s), 978(m), 904(m), 827(m), 721(m). ¹H NMR (CDCl₃) δ : 7.11 ~ 7.07 (m, 1H, ArH), 6.61 (s, 2H, ArH), 6.26 (d, J = 8.4 Hz, 1H, ArH), 6.21 (s, 3H, ArH), 6.12 (s, 1H, ArH), 4.59 ~ 4.54 (m, 4H, CH), 4.38–4.19 (m, 10H, OCH₂), 4.09 ~ 3.96 (m, 2H, CH₂), 3.75 (s, 24H, OCH₃), 1.84 (d, J = 6.0 Hz, 6H, CH₂), 1.23 (b, 58H, CH₂), 0.86 (t, J = 6.6 Hz, 12H, CH₃); ¹³C NMR (CDCl₃) δ : 14.0, 22.6, 28.0, 29.4, 29.7, 29.7, 29.9, 31.9, 34.4, 35.6, 51.9, 67.1, 100.7, 126.5, 128.4, 154.4, 169.8. **2h** (R = CH₃, R' = C₆H₅): white solid, Yield: 76%, mp: 81.3–82.9 °C. IR (KBr) v: 2956(s), 2925(s), 1766(vs), 1611(m), 1587(m), 1503(s), 1438(s), 1407(m), 1379(s), 1307(s), 1213(s), 1129(s), 1084(s), 978(m), 904(m), 827(m), 721(m) cm⁻¹. ¹H NMR (CDCl₃) δ : 7.19 ~ 7.15 (m, 4H, ArH), 7.00–7.08 (m, 3H, ArH), 6.78 (s, 8H, ArH), 6.44 (d, *J* = 3.0 Hz, 3H, ArH), 6.36 (s, 1H, ArH), 6.06 (s, 4H, CH), 4.55 ~ 4.47 (m, 16H, OCH₂), 3.85 (s, 12H, OCH₃), 3.81(s, 12H, OCH₃); ¹³C NMR (CDCl₃) δ : 14.0, 22.6, 28.0, 29.4, 29.7, 29.7, 29.9, 31.9, 34.4, 35.6, 51.9, 67.1, 100.7, 126.5, 128.4, 154.4, 169.8.

2i (R = CH₃, R' = C₆H₄CH₃-*p*): white solid, Yield: 56%, mp: 187.3–188.5 °C. IR (KBr) v: 2954 (w), 1738(vs), 1589(m), 1500(s), 1438(m), 105(w), 1113(s), 1078(s), 928(w), 848(w), 701(s) cm⁻¹. ¹H NMR (CDCl₃) δ : 6.85 (d, J = 7.8 Hz, 2H, ArH), 6.75 (d, J = 7.8 Hz, 8H, ArH), 6.71 (d, J = 7.8 Hz, 2H, ArH), 6.53 (d, J = 7.2 Hz, 6H, ArH), 6.31 (d, J = 7.2 Hz, 4H, ArH), 6.20 (s, 2H, ArH), 5.89 (s, 4H, CH), 4.40~4.31 (m, 16H, OCH₂), 3.72 (s, 12H, OCH₃), 3.68 (s, 12H, OCH₃), 2.29, 2.22 (s, s, 12H, CH₃).

2j (R = CH₂CH₃, R' = C₅H₁₁): white solid, Yield: 83%, mp: 90.3–91.8 °C. IR (KBr) v: 2926(s), 2854(m), 1763(vs), 1737(s), 1505(m), 1442(m), 1380(w), 1306(m), 1202(s), 1126(m), 1084(m), 901(w), 850(w), 813(w), 716(w) cm⁻¹. ¹H NMR (CDCl₃) δ : 6.65 (s, 1H,ArH), 6.62 (s, 2H, ArH), 6.59 (s, 1H, ArH), 6.22 (s, 12H, ArH), 4.59 (t, J = 7.8 Hz, 4H, CH), 4.29 ~ 6.26 (m, 16H, OCH₂), 3.75 (s, 16H, OCH₂), 1.80–1.86 (m, 12H, CH₂); 1.26 ~ 1.23 (m, 32H, CH₂), 0.85 (t, J = 7.2 Hz, 24H, CH₃); ¹³C NMR (CDCl₃) δ : 14.1, 18.4, 22.7, 27.9, 28.1, 29.3, 29.8, 32.1, 34.5, 35.6, 51.9, 58.4, 60.9, 67.1, 100.7, 126.2, 126.5, 128.4, 128.6, 154.4, 169.3, 169.7, 170.1

2k (R = CH₂CH₃, R' = C₆H₅): white solid, Yield: 80%, mp: 83.6–85.1 °C. IR (KBr) v = 3058(w), 2925(w), 2377(w), 1758(vs), 1620(s), 1500(s), 1443(m), 1404(m), 1384(m), 1303(m), 1203(s), 1163(m), 1115(m), 1080(m), 1029(w), 925(w), 855(w), 811(w), 701(w). ¹H NMR (CDCl₃) δ : 7.03 (d, J = 7.8 Hz, 2H, ArH), 6.92 (s, 12H, ArH), 6.66 (s, 8H, ArH), 6.34 (s, 2H, ArH); 6.31(s, 2H, ArH), 6.24 (s, 2H, ArH), 5.94 (s, 4H, CH), 4.41 ~ 4.30 (m, 16H, OCH₂), 4.20 (q, J = 14.4 Hz, 8H, OCH₂), 4.15 (q, J = 14.4 Hz, 8H, OCH₂), 1.22 (m, 24H, CH₃); ¹³C NMR (CDCl₃) δ : 14.1, 18.4, 35.3, 42.8, 51.9, 52.1, 58.4, 60.9, 61.1, 66.3, 67.1, 67.3, 99.3, 100.6, 125.5, 126.7, 127.5, 128.9, 132.2, 142.0, 154.5, 154.8, 168.8, 169.2.

21 (R = CH₂CH₃, R' = C₆H₄CH₃-*p*): white solid, Yield: 75%, mp: 120.8–122.2 °C. IR (KBr) *v*: 2983(w), 2922(w), 2316(w), 1760(vs), 1612(w), 1587(w), 1503(s), 1439(m), 1405(m), 1306(m), 1208(s), 1113(s), 1082(s), 1023(m), 925(w), 857(w), 812(w), 723(w) cm⁻¹. ¹H NMR (CDCl₃) δ : 6.75 (d, *J* = 7.2 Hz, 10H, ArH), 6.55 (d, *J* = 6.6 Hz, 8H, ArH), 6.35 (d, 2H, ArH), 6.30 (s, 2H, ArH), 6.21 (s, 2H, ArH), 5.90 (s, 4H, CH), 4.35–4.39 (m, 12H, OCH₂), 4.27– 4.25 (m, 4H, OCH₂), 4.20 (q, J = 7.2 Hz, 8H, OCH₂); 4.15 (q, J = 7.2 Hz, 8H, OCH₂), 2.22 (s, 12H, CH₃), 1.23 (m, 24H, CH₃); ¹³C NMR (CDCl₃) δ : 14.1, 18.4, 21.1, 42.5, 51.8, 58.4, 60.9, 61.1, 67.0, 67.3, 99.6, 100.7, 126.8, 127.6, 128.3, 129.0, 132.2, 134.5, 139.0, 154.4, 154.8, 168.9, 169.2.

2m (R = CH₂CH₃, R' = C₆H₄NO₂-*m*): light yellow solid, Yield: 82%, mp: 93.6–95.0 °C. IR (KBr) v: 2985(w), 2854(w), 2345(w), 1758(vs), 1613(m), 1587(m), 1529(s), 1503(s), 1442(m), 1407(m), 1383(s), 1305(w), 1207(s), 1114(m), 1078(m), 921(w), 857(w), 808(w), 737(w) cm⁻¹. ¹H NMR (CDCl₃) δ : 7.80 (d, *J* = 7.2 Hz, 4H, ArH), 7.29 (s, 2H, ArH), 7.11 (s, 8H, ArH), 6.48 (s, 2H, ArH), 6.31 (s, 2H, ArH), 6.29 (s, 2H, ArH), 6.01 (s, 4H, ArH), 5.22 (s, 2H, CH), 4.58 ~ 4.44 (m, 16H, OCH₂), 4.19 (d, *J* = 6.6 Hz, 8H, OCH₂), 4.14 (d, *J* = 6.6 Hz, 8H, OCH₂), 1.26–1.22 (m, 12H, CH₃), 0.90 (t, *J* = 7.2 Hz, 12H, CH₃); ¹³C NMR (CDCl₃) δ : 14.1, 18.4, 42.6, 58.4, 61.2, 65.9, 66.3, 66.6, 99.3, 120.9, 123.6, 128.5, 130.9, 135.6, 144.7, 147.7, 154.8, 155.1. 168.3, 168.6.

Results and discussion

It has reported that BF₃·OEt₂ can efficiently catalyzed cyclocondensation of 1,3-dialkoxybenzene or 3-alkoxyphenol with various aldehydes to form resorcinarene octaalkyl [9, 10] or tetraalkyl [24, 25] ethers. We reasoned that 1,3-(dialkoxycarbonylmethoxy)benzene, which are very similar to 1,3-dialkoxybenzene in structure, would smoothly undergo this kind condensation reaction with aldehydes to directly form resorcinarene derivatives with eight functional acetates, which are key intermediates for the chemical modification of resorcinarene [24-26]. 1,3-(Dialkoxycarbonylmethoxy)benzenes ($R = CH_3$, C_2H_5) 1a-1b, the starting materials for this work, were conveniently synthesized in very satisfied yields from a alkylation of resorcinol with methyl or ethyl a-chloroacetates in the refluxing system of K₂CO₃/KI/acetone for about 10 h. Then the cyclocondensation of **1a-1b** with aldehydes were carried out in CH₂Cl₂ in the presence of BF₃·Et₂O as Lewis acid catalyst at room temperature for overnight. After workup we are very satisfied to find that the resorcinarene O-acetates 2a-2m were efficiently in good to excellent yields (Table 1). Various aliphatic aldehydes with two to nine carbon chains and aromatic aldehydes with electrondonating or withdrawing substituent could be employed in the reaction but had not much influence on the yield of resorcinarene. Even m-nitrobenzaldehyde can give very high yield of resorcinarene O-acetate 2m. It is reported that in the acid-catalyzed reaction nitrobenzaldehyde could not react with resorcinol to form tetranitrophenyl resorcinarene and the reaction was only stopped at dimerization step [2]. This result demonstrated that this reaction has great

 Table 1
 Data of the synthesis of resorcinarene O-acetates

Entry	R	R′	Compd	Yield (%)
1	CH ₃	CH ₂ CH ₃	2a	69
2	CH ₃	$(CH_2)_2CH_3$	2b	63
3	CH ₃	$(CH_2)_4CH_3$	2c	67
4	CH ₃	(CH ₂) ₅ CH ₃	2d	57
5	CH ₃	(CH ₂) ₆ CH ₃	2e	72
6	CH ₃	(CH ₂) ₇ CH ₃	2f	62
7	CH ₃	$(CH_2)_8CH_3$	2g	67
8	CH ₃	Ph	2h	76
9	CH ₃	p-CH ₃ C ₆ H ₄	2i	56
10	CH ₂ CH ₃	$(CH_2)_4CH_3$	2j	83
11	CH ₂ CH ₃	C ₆ H ₅	2k	80
11	CH ₂ CH ₃	p-CH ₃ C ₆ H ₅	21	75
12	CH ₂ CH ₃	m-NO ₂ C ₆ H ₄	2m	82

generality and can be used for the preparation of resorcinarene O-acetates with versatile substituents (Scheme 1).

The structures of all prepared resorcinarene derivatives **2a–2m** were fully characterized by ¹H and ¹³C NMR, MS, and IR spectra. As for example in ¹H NMR spectrum of **2c** (Fig. 1) the $-OCH_2CO-$ groups show slightly broad peak at

about 4.28 ppm and the methoxyl groups displays a singlet at 3.76 ppm, which shows the eight -OCH₂CO₂CH₃ are in nearly same environments. The proton sign of four bridging methyne appears a singlet at 4.58 ppm and the protons at C-2 and C-5 position of resorcinol ring show two single peaks in 1:1 ratio at 6.61 and 6.21 ppm and the four pentyl groups display three signs at 1.85 ppm for methylene groups (CH₂CH₂CH₂CH₂CH₂CH₃), 1.29 ppm for propylene units (CH₂CH₂CH₂CH₂CH₃) and 0.85 ppm for methyl groups clearly shows that the four resorcinol rings and four pentyl groups are in same environments and the whole molecule is in *rccc* (all *cis*) configuration [2, 13, 14]. The ¹H NMR spectra of other resorcinarenes with alkyl bridging groups show similar peak pattern and we could get the results that all of them adopt rccc (all cis) configuration. The resorcinarenes with aryl bridging groups show a little complicated ¹H NMR spectra situation, from which we can not assigned the exact configuration of the molecules.

The X-ray single crystal analysis of four representative compounds **2c**, **2h**, **2i** and **2m** unambiguously confirms the structures of resorcinarenes. The crystal data and refinement details are given in Table 2 and the molecular structures are showed in Figs. 2, 3, 4 and 5. From Fig. 2 it can be seen that the four bridging pentyl groups stretch to lower rim of resorcinarene and eight *O*-acetate groups

are located at upper rim. All four resorcinol rings stretch to upper direction, two of which are almost vertical, and the other two nearly horizontal. So the molecule is in an *rccc* (all *cis*) configuration, which also supports the ¹H NMR analysis. Form Fig. 3 it is interesting to find that phenyl resorcinarene **2h** is in *rctt* (*cis–trans–trans*) configuration, which is similar to the single crystal structure of the ethyl resorcinarylacetates [22] and The four resorcinol units in the ring were divided into two groups with two resorcinol units at almost perpendicular direction and other two resorcinol rings nearly in horizontal position. The stretching direction of two perpendicular resorcinol rings is opposite. One is upper standing and the other is upside down. The four phenyl groups are also divided into two groups with two neighboring phenyl groups at locating in upper direction, while other two phenyl groups stretching to down direction. The molecule **2i** and **2m** (Figs. 4, 5) are also in *rctt* (*cis–trans–trans*) configurations. The *rccc* (all *cis*) configuration and *rctt* (*cis–trans–trans*) configurations of resorcinarenes [7, 27, 28]. From above crystal data we might tentatively conclude that alkyl resorcinarenes prefer *rccc* configuration, while aryl resorcinarenes usually adopt *rctt* configuration.

Table 2 Crystal data and structure refinement details of compounds

Phase	2C	2h	2i	2m
Molecular formula	$C_{72}H_{96}O_{24}$	C ₇₆ H ₇₂ O ₂₄	$C_{80}H_{76}O_{24}$	$C_{84}H_{84}N_4O_{32}$
Formula weight	1,345.49	1,369.34	1,421.41	1,661.56
T/K	296(2)	296(2)	296(2)	273(2)
Wavelength/nm	0.71073	0.71073	0.71073	0.71073
Crystal system	Monoclinic	Triclinic	Triclinic	Monoclinic
Space group	P 21/c	P-1	P-1	Р
a/nm	20.894(6)	11.4930(15)	11.5414(18)	11.2418(12)
<i>b</i> /nm	20.229(5)	12.2750(16)	11.8030(18)	24.785(3)
c/nm	18.726(5)	14.632(3)	14.520(2)	15.2999(16)
α (°)	90	107.238(2)	73.899(2)	90.00
β (°)	90	99.818(2)	84.366(2)	103.931(2)
γ (°)	90	113.899(2)	82.272(2)	90.00
$V (nm^3)$	7,915(4)	1,699.7(5)	1,879.3(5)	4,137.5(8)
Z, calculated density (mg cm $^{-3}$)	4, 1.129	1, 1.338	1, 1.256	4, 1.334
<i>F</i> (000)	2,880	720	748	1,744
Absorption coefficient (mm ⁻¹)	0.084	0.100	0.093	0.103
θ range/(°)	1.40-25.01	1.55-25.01	1.81-25.00	2.03-25.00
Limiting indices	$\begin{array}{l} -24 \leq h \leq 24, \\ -23 \leq k \leq 24, \\ -22 \leq l \leq 22 \end{array}$	$-13 \le h \le 13,$ $-14 \le k \le 14,$ $-16 \le l \le 17$	$-13 \le h \le 13,$ $-14 \le k \le 12,$ $-17 \le l \le 17$	$-13 \le h \le 12,$ $-29 \le k \le 28,$ $-18 \le l \le 18$
Reflections collected/unique	57,036/13,965 [<i>R</i> (int) = 0.1684]	12,386/5,955 [<i>R</i> (int) = 0.0254]	13,716/6,564 [R(int) = 0.0510]	21,348/7,228 [<i>R</i> (int) = 0.0643]
Completeness to theta	99.9%	99.3%	99.4%	99.1%
Data/restraints/parameters	13,965/1,230/968	5,955/0/454	6,564/7/475	7,228/13/536
Refinement method	Full-matrix least-squares on F^2	Full-matrix least-squares on F^2	Full-matrix least-squares on F^2	Full-matrix least-squares on F^2
Final <i>R</i> indices[$I > 2\sigma(I)$]	$R_1 = 0.1209,$ $wR_2 = 0.2883$	$R_1 = 0.1017,$ $wR_2 = 0.3261$	$R_1 = 0.0904,$ $wR_2 = 0.2553$	$R_1 = 0.1095,$ $wR_2 = 0.2830$
R indices (all data)	$R_1 = 0.3145,$ $wR_2 = 0.3728$	$R_1 = 0.1377,$ $wR_2 = 0.3615$	$R_1 = 0.1768,$ $wR_2 = 0.3245$	$R_1 = 0.2228,$ $wR_2 = 0.3335$
Goodness-of-fit on F^2	1.066	1.175	1.082	1.003
Largest diff. peak and hole/(e \cdot nm ⁻³ \times 10 ⁻³)	0.591 and -0.512	1.001and -0.694	0.867 and -0.928	0.705 and -0.504

Fig. 2 The crystal structure of 2c

Fig. 3 The crystal structure of 2h

In summary the results reported here established an alternate efficient route to prepare a wide range of resorcinarene *O*-acetates in high yields, which are the key intermediates in the chemical modification process of resorcinarenes. The reaction procedure is convenient, involving simple experimental procedure and product isolation, thus dispense with extensive recrystallisation or chromatographic purification steps. This present protocol could be used for the convenient synthesis of a number of functionalized resorcinarenes.

Fig. 4 The crystal structure of 2i

Fig. 5 The crystal structure of 2m

Supplementary material

Single crystal X-ray diffraction data are deposited with CCDC (Deposition numbers **2c**: 733522; **2h**: 725255; **2i**: 725256; **2m**: 753141).

Acknowledgments This work was financially supported by the National Natural Science Foundation of China (Grant No. 20672091 and 20972132).

References

 Timmerman, P., Verboom, W., Reinhoudt, D.N.: Resorcinarenes. Tetrahedron 52, 2663–2704 (1996)

- Tunstad, L., Tucker, J., Dalcanale, E., Weiser, J., Bryant, A., Sherman, C., Helgsin, C., Knobler, B., Cram, J.: Host–guest complexation. 48. Octol building blocks for cavitands and carcerands. J. Org. Chem. 54, 1305–1312 (1989)
- Biros, S.M., Rebek Jr, J.: Structure and binding properties of watersoluble cavitands and capsules. Chem. Soc. Rev. 36, 93–104 (2007)
- Bondy, C.R., Loeb, S.J.: Amide based receptors for anions. Coord. Chem. Rev. 240, 77–99 (2003)
- Beyeh, N.K., Kogej, M., Ahman, A., Rissanen, K., Schalley, C.A.: Flying capsules: mass spectrometric detection of pyrogallarene and resorcinarene hexamers. Angew. Chem. Int. Ed. 45, 5214–5218 (2006)
- Jasat, A., Sherman, J.C.: Carceplexes and hemicarceplexes. Chem. Rev. 99, 931–968 (1999)
- Abis, L., Dalcanale, E., Du-vosel, A., Spera, S.: Structurally new macrocycles from the resorcinol–aldehyde condensation. Configurational and conformational analyses by means of dynamic NMR, NOE, and T1 experiments. J. Org. Chem. 53, 5475–5479 (1988)

- Roberts, B.A., Cave, G.W.V., Raston, C.L., Scott, J.L.: Solvent-free synthesis of calix[4]resorcinarenes. Green Chem. 3, 280–284 (2001)
- 9. Curtis, A.D.M.: Novel calix[4]resorcinarene glycosides. Tetrahedron Lett. **38**, 4295–4296 (1997)
- Iwanek, W., Urbaniak, M., Bochenska, K.: The template synthesis and complexation properties of methoxypyrogallo[4]arene. Tetrahedron 58, 2239–2243 (2002)
- Barrett, A.G.M., Braddock, D.C., Henschke, J.P., Walker, E.R.: Ytterbium(III) triflate-catalysed preparation of calix[4]resorcinarenes. Lewis assisted Brønsted acidity. J. Chem. Soc., Perkin Trans. 1, 873–878 (1999)
- Kobayashi, K., Konishi, K.: Scandium triflate-catalyzed cyclocondensation of 1, 3-dialkoxybenzenes with 1, 3, 5-trioxane. Formation of resorcin[4]arenes and confused resorcin[4]arenes. Tetrahedron Lett. 47, 3991–3994 (2006)
- Peterson, K.E., Smith, R.C., Mohan, R.S.: Bismuth compounds in organic synthesis. Synthesis of resorcinarenes using bismuth triflate. Tetrahedron Lett. 44, 7723–7725 (2003)
- Deleersnyder, K., Mehdi, H., Horváth, I.T., Binnemans, K., Parac-Vogt, T.N.: Lanthanide(III) nitrobenzenesulfonates and *p*-toluenesulfonate complexes of lanthanide(III), iron(III), and copper(II) as novel catalysts for the formation of calix[4]resorcinarene. Tetrahedron 63, 9063–9070 (2007)
- Iwanek, W., Syzdol, B.: Lewis acid-induced synthesis of octamethoxyresorcarenes. Synth. Commun. 29, 1209–1216 (1999)
- Vuano, B., Pieroni, O.I.: A one-step synthesis of *O*-functionalized resorcinarene under heterogeneous catalysis conditions. Synthesis 72–73 (1999)
- Botta, B., Giovanni, M.C., Delle Monache, G., De Rosa, M.C., Gacs-Baitz, E., Botta, M., Corelli, F., Tafi, A., Santini, A., Benedetti, E., Carlo Pedone, C., Misitit, D.: A novel route to calix[4]arenes. 2. Solution- and solid-state structural analyses and molecular modeling studies. J. Org. Chem. 59, 1532–1541 (1994)
- Falana, O.M., Al-Farhan, E., Keehn, P.M., Stevenson, R.: High yield synthesis of the parent C-unsubstituted calix[4]resorcinarene octamethyl ether. Tetrahedron Lett. 35, 65–68 (1994)

- Stursda, J., Dvorakova, H., Smidrkal, J., Petrickova, H., Moravcova, J.: A novel synthesis of parent resorc[4]arene and its partial alkyl ethers. Tetrahedron Lett. 45, 2043–2046 (2004)
- Konishi, H., Nakamura, T., Ohata, T., Kobayashi, K., Morikawa, O.: The acid-catalyzed condensation of 2-propylresorcinol with formaldehyde diethyl acetal. The formation and isomerization of calix[4]resorcinarene, calix[5]resorcinarene, and calix[6]resorcinarene. Tetrahedron Lett. **37**, 7383–7386 (1996)
- Luostarinene, M., Åhman, A., Nissinen, M., Rissanen, K.: Ethyl pyrogall[6]arene and pyrogall[4]arene: synthesis, structural analysis and derivatization. Supramol. Chem. 16, 505–512 (2004)
- Han, J., Cai, Y.H., Liu, L., Yan, C.G., Li, L.: Syntheses, crystal structures, and electrochemical properties of multi-ferrocenyl resorcinarenes. Tetrahedron 63, 2275–2282 (2007)
- Han, J., Yan, C.G.: Synthesis, crystal structure, configuration of resorcinarene amides. J. Incl. Phenom. Macrocycl. Chem. 61, 119–126 (2008)
- McIldowie, M.J., Mocerino, M., Skelton, B.W., White, A.H.: Facile Lewis acid catalyzed synthesis of C₄ symmetric resorcinarenes. Org. Lett. 2, 3869–3971 (2000)
- Boxhall, J.Y., Page, P.C.B., Elsegood, M.R.J., Chan, Y., Heaney, H.: The synthesis of axially chiral resorcinarenes from resorcinol monoalkyl ethers and aldehyde dimethylacetals. Synlett 7, 1002– 1006 (2003)
- Podyachev, N., Burmakina, N., Syakaev, V., Sudakova, S., Shagidullin, R., Konovalov, R.: Synthesis, IR and NMR characterization and ion extraction properties of tetranonylcalix[4]resorcinol bearing acetylhydrazone groups. Tetrahedron 65, 408– 417 (2009)
- Thondorf, L., Brenn, J., Bohmer, V.: Conformational properties of methylene bridged resorcarenes. Tetrahedron 54, 12823– 12828 (1998)
- Davorakova, H., Stursa, J., Cajan, M., Moravcova, J.: Synthesis and conformational properties of partially alkylated methylenebridged resorc[4]arenes—study of the flip-flop inversion. Eur. J. Org. Chem. 4519–4527 (2006)